'Lurking amidst the mass chaos of information that exists in our reality is a little gem of a concept called the Quantum Zeno Effect. It is partially named after ancient Greek philosopher Zeno of Elea, who dreamed up a number of paradoxes about the fluidity of motion and change. For example, the “Arrow Paradox” explores the idea that if you break down time into “instants” of zero duration, motion cannot be observed. Thus, since time is composed of a set of instants, motion doesn’t truly exist. We might consider Zeno to have been far ahead of his time as he appeared to be thinking about discrete systems and challenging the continuity of space and time a couple thousand years before Alan Turing resurrected the idea in relation to quantum mechanics: “It is easy to show using standard theory that if a system starts in an eigenstate of some observable, and measurements are made of that observable N times a second, then, even if the state is not a stationary one, the probability that the system will be in the same state after, say, one second, tends to one as N tends to infinity; that is, that continual observations will prevent motion…”. The term “Quantum Zeno Effect” was first used by physicists George Sudarshan and Baidyanath Misra in 1977 to describe just such a system - one that does not change state because it is continuously observed.

'The challenge with this theory has been in devising experiments that can verify or falsify it. However, technology has caught up to philosophy and, over the last 25 years, a number of experiments have been performed which seem to validate the effect. In 2001, for example, physicist Mark Raizen and a team at the University of Texas showed that the effect is indeed real and the transition of states in a system can be either slowed down or sped up simply by taking measurements of the system.

'I have enjoyed making a hobby of fully explaining quantum mechanics anomalies with the programmed reality theory. Admittedly, I don’t always fully grasp some of the deep complexities and nuances of the issues that I am tackling, due partly to the fact that I have a full time job that has naught to do with this stuff, and partly to the fact that my math skills are a bit rusty, but thus far, it doesn’t seem to make a difference. The more I dig in to each issue, the more I find things that simply support the idea that we live in a digital (and programmed) reality.' (The Universe Solved article).

media-underground.net